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1 Objectives

1. A pavement aging model

» It can obtain different pavement aging profiles based on the site-specific environment
» It can distinguish the binders with different aging sensitivity
» It can capture the effects of air voids on pavement aging

2. A pavement performance model with aging considerations

» It can obtain the pavement remaining life considering aging
» It can distinguish the pavement performance built with different binders

3. Model developments and validations are based on experimental part



2 Modelling Framework-Multiphysics aging model
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Fig. 1 Three physics of pavement field aging

Hanyu Zhang, et al. “Framework to predict asphalt pavement aging and its effect on pavement remaining fatigue life.” AAPT, 2025 3



2 Modelling Framework-Multiphysics aging model
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Fig. 2 Governing equations and circular dependency of pavement field aging
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2 Modelling Framework-Coupling of aging and mechanical models

External factors (e.g., temperature, aging) change the molecular volume system and
molecular motions, results in the change of material properties (e.g., viscosity, modulus)
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Hanyu Zhang, et al. "A time-temperature-ageing shift model for bitumen and asphalt mixtures based on free volume theory."
International Journal of Pavement Engineering, 2023. 5



2 Modelling Framework-A new viscoelastic-continuum damage model for
asphalt concrete

For pavement performance and fatigue life evaluations, we need to know the damage evolutions
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Hanyu Zhang, et al. "A new viscoelastic-continuum damage model for asphalt concrete with applications to cyclic
indirect tensile fatigue tests."” International Journal of Fatigue, 2025.



2 Modelling Framework-Workflow of the model
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3 Model Validations

The model inputs are based on the testing results of the original binders (at least from the same refinery
with the same PG), mixture air voids, pavement structures, and site-specific environments.

Road section |Location Measurements Purposes

Validating temperature predictions

Carbonyl index of recovered binder,

SE2 (E6) e, Shisen pavement temperature, FWD
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Validating pavement response model
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IDT fatigue test Validating carbonyl predictions
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IDT fatigue test
Podhradi, Czech Republic Carbonyl index of recovered binder Validating carbonyl predictions




3 Model Validations-Temperature prediction

The model successfully captures the daily temperature variations and seasonal temperature changes
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Fig. 4 Comparison of modelled and measured temperatures at 2 cm below the road surface of SE2 road section

Data Source: Temperature measurements were taken from VTI report



3 Model Validations-Carbonyl index prediction

The model can describe the different aging gradients based on the on-site environment conditions
The model can distinguish the aging evolutions of binders with different aging sensitivities
The model can identify the effects of air voids on aging evolutions and aging gradients
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3 Model Validations-Carbonyl index prediction
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3 Model Validations-Material constitutive model

The model successfully captures the strain evolutions under fatigue load and the transition load cycles

before the final failure

2.5E+04

OHorizontal strain-Test

© Horizontal strain-FEM

2.0E+04 4
)
=
bl
% 1.5E+04 4
e
S
_U
g
£ 1.0E+04 4
£
7]
5.0E+03 +
0.0E+00 T T T T
0 1000 2000 3000 4000 5000
Load cycle
OHorizontal strain-Test ¢ Horizontal strain-FEM
2.5E+04
S le C °
ample
2.0E+04 | P o3
E
a
% 1.SE+H04 +
e
T
81
E
= 1.0E+04 4
‘=
=
wn
5.0E+03 A
0.0E+00 T T T T
0 1000 2000 3000 4000 5000
Load cycle

Fig. 9 Comparison of modelled and measured strain response in the cyclic IDT fatigue tests (SE1 and BE2 sections)
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3 Model Validations-Pavement response model

The model successfully captures the pavement response under FWD load
and its evolutions with aging
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Fig. 11 Comparison of modelled and back-calculated transverse strain

Fig. 10 Comparison of modelled and measured deflection basins )
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Data Source: FWD measurements and back-calculated strain were taken from VTI report 13



4 Model Application I-Fatigue life prediction considering field aging

Von Mises stress distribution at different service/aging years

Main finding:

High stress moves from the bottom of asphalt
layer to the road surface with pavement aging;
thus, it potentially changes the cracking mode
from bottom-up to top-down.

Fig. 12 Von Mises stress distributions at different service years
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4 Model Application I-Fatigue life prediction considering field aging

Damage (%) after 10° load cycles

Main finding:

16 years aging introduces more than 50% extra
damage on the road surface (loading area and
the edges), potentially contribute to the
longitudinal cracking along the wheel path

Fig. 13 Pavement damage conditions after 10° load cycles at different service years

Hanyu Zhang, et al. “Temporal homogenization modelling of viscoelastic asphalt concretes and pavement structures under large numbers of

load cycles.”" ASCE Journal of Engineering Mechanics, 2024.
Hanyu Zhang. "Coupled oxidative ageing and mechanical Multiphysics modelling of asphalt pavements." PhD Thesis, 2025. 15



4 Model Application I-Fatigue life prediction considering field aging

In this case, 16 years aging would shorten the pavement minimum remaining fatigue life
up to 1.6 years when only consider the effect of ageing on pavement modulus
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4 Model Application lI-Performance comparison of roads built with

different binders (Material selection)
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Fig. 16 Comparison of pavement remaining fatigue life predictions of four different road sections of E6



4 Model Application |I-Performance comparison of roads built with
different binders (Material selection)
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5 Summary

» Aging gradient is as evident as temperature gradient, and should be considered in pavement
mechanical analysis and performance predictions

» Carbonyl index (CA) is a fundamental parameter to quantify aging evolution and gradient in
the pavement structure, replacing the empirical modulus-based aging characterizations

» The model has been validated at different scales (material scale and structure scale) and by
different measurements (temperature, CA value, and FWD response)

» Field aging would change the positions of high stress region to the road surface and
potentially contribute to top-down cracking

19



5 Summary

» 16 years field aging would introduce more than 50% extra damage on the road surface (edge of
loading area), and it potentially leads to longitudinal cracking

» In this case study, field aging would shorten the pavement remaining fatigue life up to 1.6 years
when only considering the effects of aging on modulus change and gradient

» The model have two major applications: (1) predicting pavement performance considering aging;
and (2) compare the performance of roads built with different binders

» The model can consider the effects of maintenance and rehabilitation on extending the pavement
remaining service life

» The model can be compiled into a program or a module of AASHTOWare Pavement ME Design

for the user committee.
20
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