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1 Objectives

1. A pavement aging model

➢ It can obtain different pavement aging profiles based on the site-specific environment

➢ It can distinguish the binders with different aging sensitivity

➢ It can capture the effects of air voids on pavement aging

2. A pavement performance model with aging considerations

➢ It can obtain the pavement remaining life considering aging

➢ It can distinguish the pavement performance built with different binders

3. Model developments and validations are based on experimental part
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2 Modelling Framework-Multiphysics aging model

Fig. 1 Three physics of pavement field aging
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Hanyu Zhang, et al. “Framework to predict asphalt pavement aging and its effect on pavement remaining fatigue life.” AAPT, 2025
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2 Modelling Framework-Multiphysics aging model

Fig. 2 Governing equations and circular dependency of pavement field aging

Charles Glover, et al. “Evaluation of binder aging and its influence in aging of hot mix asphalt concrete: technical report.” 

Texas A&M Transportation Institute, 2014.
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2 Modelling Framework-Coupling of aging and mechanical models

External factors (e.g., temperature, aging) change the molecular volume system and 

molecular motions, results in the change of material properties (e.g., viscosity, modulus)
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Fig. 3 Fractional free volume changes of asphalt materials due to 

increased temperature and aging level

Original free volume model

𝑓 = 𝑓𝑔 + 𝛼𝑓 𝑇 − 𝑇𝑔  1 

Extended model considering aging

𝑓 = 𝑓𝑅 + 𝛼𝑇 𝑇 − 𝑇𝑅 − 𝛽𝐶𝐴 𝐶𝐴 − 𝐶𝐴𝑅  1 

Time-temperature-aging shift factor

lg𝜙𝑇 ,𝐶𝐴 = −𝐶1  
𝐶3 𝑇 − 𝑇𝑅 − 𝐶2 𝐶𝐴 − 𝐶𝐴𝑅 

𝐶2𝐶3 + 𝐶3 𝑇 − 𝑇𝑅 − 𝐶2 𝐶𝐴 − 𝐶𝐴𝑅 
  1 

Hanyu Zhang, et al. "A time-temperature-ageing shift model for bitumen and asphalt mixtures based on free volume theory." 

International Journal of Pavement Engineering, 2023.
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2 Modelling Framework-A new viscoelastic-continuum damage model for 
asphalt concrete

For pavement performance and fatigue life evaluations, we need to know the damage evolutions

Step 1: Damage density, apparent stress/strain, 

effective stress/strain based on continuum 

damage mechanics

Step 2: VE-continuum damage constitutive model

Step 3: Use of pseudo strain to exclude the energy 

dissipation due to viscoelastic deformation

Step 4: Dissipated pseudo strain energy as 

the driving force for damage evolution

Step 5: Pseudo J-integral Paris’ law for damage evolution

Remark: fatigue life can be obtained by 

integrating both sides based on a certain 

fatigue failure criterion (e.g., D=0.5)

Hanyu Zhang, et al. ”A new viscoelastic-continuum damage model for asphalt concrete with applications to cyclic 

indirect tensile fatigue tests." International Journal of Fatigue, 2025.
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2 Modelling Framework-Workflow of the model

Pavement aging model
Output T and CA functions

lg𝜙𝑇 ,𝐶𝐴 = −𝐶1  
𝐶3 𝑇 − 𝑇𝑅 − 𝐶2 𝐶𝐴 − 𝐶𝐴𝑅 

𝐶2𝐶3 + 𝐶3 𝑇 − 𝑇𝑅 − 𝐶2 𝐶𝐴 − 𝐶𝐴𝑅 
  1 

Time-temperature-aging shift model

Input shift factor 𝜙𝑇,𝐶𝐴

Viscoelastic-
continuum 

damage model
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3 Model Validations

Road section Location Measurements Purposes

SE2 (E6) Uddevalla, Sweden
Carbonyl index of recovered binder, 

pavement temperature, FWD

Validating temperature predictions

Validating carbonyl predictions

Validating pavement response model

SE1 (RV-17) Marieholm, Sweden
Carbonyl index of recovered binder, 

IDT fatigue test Validating carbonyl predictions

Validating material constitutive model
BE2 Assenede, Belgium

Carbonyl index of recovered binder, 

IDT fatigue test

CZ2 Podhradí, Czech Republic Carbonyl index of recovered binder Validating carbonyl predictions

The model inputs are based on the testing results of the original binders (at least from the same refinery 

with the same PG), mixture air voids, pavement structures, and site-specific environments.



Fig. 4 Comparison of modelled and measured temperatures at 2 cm below the road surface of SE2 road section

9

3 Model Validations-Temperature prediction

The model successfully captures the daily temperature variations and seasonal temperature changes

Data Source: Temperature measurements were taken from VTI report
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3 Model Validations-Carbonyl index prediction

• The model can describe the different aging gradients based on the on-site environment conditions

• The model can distinguish the aging evolutions of binders with different aging sensitivities

• The model can identify the effects of air voids on aging evolutions and aging gradients
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Fig. 5 Comparison of modelled and measured 
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3 Model Validations-Carbonyl index prediction
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3 Model Validations-Material constitutive model

The model successfully captures the strain evolutions under fatigue load and the transition load cycles 

before the final failure

Fig. 9 Comparison of modelled and measured strain response in the cyclic IDT fatigue tests (SE1 and BE2 sections)
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Sample C Sample D



13

3 Model Validations-Pavement response model

The model successfully captures the pavement response under FWD load 

and its evolutions with aging

Fig. 10 Comparison of modelled and measured deflection basins 

(SE2 section)
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Fig. 11 Comparison of modelled and back-calculated transverse strain 

at the bottom of asphalt layer (SE2 section)

Data Source: FWD measurements and back-calculated strain were taken from VTI report
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4 Model Application I-Fatigue life prediction considering field aging

Fig. 12 Von Mises stress distributions at different service years

Main finding:

High stress moves from the bottom of asphalt 

layer to the road surface with pavement aging; 

thus, it potentially changes the cracking mode 

from bottom-up to top-down.
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4 Model Application I-Fatigue life prediction considering field aging

Fig. 13 Pavement damage conditions after 105 load cycles at different service years

Hanyu Zhang, et al. ”Temporal homogenization modelling of viscoelastic asphalt concretes and pavement structures under large numbers of 

load cycles." ASCE Journal of Engineering Mechanics, 2024.
Hanyu Zhang. ”Coupled oxidative ageing and mechanical Multiphysics modelling of asphalt pavements." PhD Thesis, 2025.

Main finding:

16 years aging introduces more than 50% extra 

damage on the road surface (loading area and 

the edges), potentially contribute to the 

longitudinal cracking along the wheel path
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4 Model Application I-Fatigue life prediction considering field aging

Fig. 14 Remaining fatigue life prediction at different service years

Fig. 15 Comparison of minimum pavement remaining fatigue life predictions 

with and without aging considerations

In this case, 16 years aging would shorten the pavement minimum remaining fatigue life 

up to 1.6 years when only consider the effect of ageing on pavement modulus 
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4 Model Application II-Performance comparison of roads built with 
different binders (Material selection)

EVA Section Ref. Section

SBS-1 Section SBS-2 Section

Fig. 16 Comparison of pavement remaining fatigue life predictions of four different road sections of E6
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4 Model Application II-Performance comparison of roads built with 
different binders (Material selection)
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Fig. 17 Comparison of pavement remaining fatigue life predictions of four different road sections 

with and without aging considerations

• SBS 2 > SBS 1 > Ref. > EVA

• Modelling performance ranking is consistent 

with lab tests and field inspections

Fig. 18 Comparison of lab tested fatigue performance of 

field cores drilled from four road sections of SE2
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5 Summary

➢  Aging gradient is as evident as temperature gradient, and should be considered in pavement 

mechanical analysis and performance predictions

➢ Carbonyl index (CA) is a fundamental parameter to quantify aging evolution and gradient in 

the pavement structure, replacing the empirical modulus-based aging characterizations

➢ The model has been validated at different scales (material scale and structure scale) and by 

different measurements (temperature, CA value, and FWD response)

➢ Field aging would change the positions of high stress region to the road surface and 

potentially contribute to top-down cracking
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5 Summary

➢ 16 years field aging would introduce more than 50% extra damage on the road surface (edge of 

loading area), and it potentially leads to longitudinal cracking

➢  In this case study, field aging would shorten the pavement remaining fatigue life up to 1.6 years 

when only considering the effects of aging on modulus change and gradient

➢ The model have two major applications: (1) predicting pavement performance considering aging; 

and (2) compare the performance of roads built with different binders

➢ The model can consider the effects of maintenance and rehabilitation on extending the pavement 

remaining service life

➢ The model can be compiled into a program or a module of AASHTOWare Pavement ME Design 

for the user committee.
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Thank You and Questions! 
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