SUPPLEMENT

STRATEGIC ASPHALT RESEARCH SYMPOSIUM MURAL SUPPLEMENT

May 16-18, 2022 Atlanta, Georgia

The mission of the Asphalt Institute Foundation is to conduct strategic research and educational activities that are designed to advance and improve the liquid asphalt industry.

Copyright © 2022 All Rights Reserved Asphalt Institute Foundation

STAR *mural* supplement

FOREWORD

As described in the 2022 STAR Symposium Report, breakout sessions were conducted with a focus on four main topics: Human Needs (Workforce Development), Environmental Sustainability, Performance (Durability), and Economics (Infrastructure Policy and Funding). Each of the topics had six subtopics assigned to one of six tables/areas in the breakout session room. Participants discussed problems related to each topic/subtopic and followed those discussions with identification of root causes of those problems, goals to address the identified problems, and strategies to achieve those goals. Goals and strategies were prioritized by the participants, with the top identified priorities making their way into the pages of the STAR Symposium Report.

But just because a goal or strategy was not identified as a top priority by the participants does not lessen its potential value. This supplement was assembled to highlight all of the ideas that came from the STAR participants that made it into the Mural whiteboard. All the problems (shown as gray sticky notes), root causes (red), goals (blue), and strategies (orange) are shown by topic/subtopic area. Comments are shown in yellow.

We encourage you to review this supplement to get more of a feel for the thoughts of the STAR participants. You never know what ideas may lead to new strategic research directions!

Ralph Shirts 2022 Strategic Asphalt Research Symposium Chair ExxonMobil-Retired Asphalt Institute Emeritus

MURAL SUPPLEMENT

HUMAN NEEDS ADAPTING TO THE WORKFORCE

	Attrac youn peop	oting Iger Die	Job se reluct me	ecurity/ ance to entor	P adve	oor rtising	
Tough/ Job	Dirty s	Deman entry lev have inc	ds for vel jobs reased	Asphali refus chan way i busi	t industry ses to ge the t does ness	Mech for kno trar	nanism owledge nsfer
	Lack of in adve	f truth rtising	Tarç the peo	geting right ople	Salary - respons	more sibility	

We will tailor our message of our future employees	Show entire picture of industry - be true in advertising	Good collaboration with teachers curriculum
Improve onsite working conditions - heat/exhaustion	Will be known as an industry to take you from entry level to senior management	Workplace that attracts talent - Jobs & Equipment

HUMAN NEEDS NEEDED SKILLS

SKILLS AND KNOWLEDGE

EMPLOYMENT CULTURE AND WORK ENVIRONMENT

RECRUITMENT PROBLEMS

Tight labor market, No incentive to get pre-training

Recruiting from wrong talent pool

CHANGE IN WORK CULTURE

Achieve loyalty of workers Adaptable/ flexible work environment based on changing times

INNOVATE WITH TIME

Move towards automation, innovative technology

Funding on future workforce training and technology

INDUSTRY PROMOTION

Attract young and future audience

Promote professionalism embedded within our work environment

1. Promote the Big Picture	2. Organize workshops to listen to young audience	3. Campaign to promote diversity and inclusion	4. Train the Trainer
5. Define a career path for more appeal	6. Form a consortium focused on future workforce training with new technology	7. Establish training labs involving industry, academia	8. Seek out external training, pressure local APA to provide quality training
9. Develop a Management Training Program for project managers	10. Develop mentoring program within industry to promote vertical education	11. Open all kinds of jobs and don't be rigid (wider audience and not just specialists)	12. Education program about career starting at a young age

In addition to listing types of jobs, also provide real-life examples of people in those jobs

HUMAN NEEDS WORKPLACE ENVIRONMENT

Environment Lack of Mobile toilet Women - Toilets **Rigid timing** childcare not friendly on worksites requirements / facilities to women systems lack of (breastfeeding flexibility stations, etc.) Remote work Night work Long hours locations/stuck in hotels for long periods **WORKPLACE SAFETY** Perception of Hot and fumes Workplace Remote burn Skeleton unsafe work safety treatment crews / a few conditions/ facilities people with environments many jobs Fatalities in Educating work zones: public about dangerous our work zones CULTURE Work feels Diversity Company / Language old school / industry culture /inclusion barriers - need low tech signs

ACCOMMODATING MODERN FAMILY

Lack of expectations, diversity training	Lack of diversity	Lack of public education regarding our work
Lack of regulations / incentives	Cost of changes	Prejudice / traditional culture / status quo
Currently lean organization	Materials require heat and results in fumes	Road closures seen as annoyance
Regulations / limits	Culture/status quo of business	Older management making decisions / resisting change
Demands to keep traffic moving	Job stress / time pressure	Low bid environment

Note: All Goals and Strategies for this subtopic are identified in the STAR Symposium Report.

HUMAN NEEDS WORKFORCE DIVERSITY

Workplace rules rigidity	Not seeking the non-traditional workforce	e Use generational champions
Not using social media	Using traditional methods only	Traditional images
Education outreach failure	Challenge of bringing in non-diverse background into diverse background	Younger generation bias from stereotypes
Fixed n on hi pract	nindset Cor iring not ices	mpensation competitive

Benc aga comp indus so v can po	hmark inst Of value eting comm tries impre ve im Dach	message Cra ue to the col nunity to and to ove our - inte nage read p	eate both lege level trade level grated to ch more eople
Train senior employees to understand younger generation	Promote the value of the industry to the community	Reach out to disadvantaged youth (foster kids) to offer a career path	Find trusted messengers to reach target audience
More churn in management for retention	Deploy grass roots efforts to reach the young	Define diversity to understand who we are trying to reach	Develop corporate culture to encourage diverse thinking
Recruit to challenged backgrounds to reach a more diverse audience	Adopt a practical approach to diversity	Match benefits to incoming generation expectations	Internships and active training to build a path forward
	Outreach programs	Use all modes (classroom, lab, field)	

HUMAN NEEDS WORKPLACE AUTOMATION

Make asphalt that doesn't require equipment	Develop a paver that extrudes asphalt at the right density	Give the problem to someone who doesn't know our industry	How do other industries solve this problem?
Collaborate with universities to develop and help with costs	Develop an instrument that communicates when road/ roof needs maintenance	Work with government DOTs to reduce barriers in adopting technologies	Run seminars on automation and share that with entire industry
Automate material sampling and testing - QC & QA	Partner with military on full automation.	Implement 100% automated paving project	Rewrite the code to embrace automation
Everything has to connected and communicating with each other. Fully integrated	Have a broader platform that other systems can connect to	Full industry alignment on automation.	Run a competition for students to get new ideas.

HUMAN NEEDS OTHER

1. Use automation to expose less people in work zone and collaborate w/ automated vehicle community to partner against risk

5. Promote

teambuilding.

create sense

of community, belonging 2. Establish strict rules on healthy shift times and sequences. Change agency position on work zones day closures, full lane. Lower temperatures to reduce exposure - real warm mixes. **Improve Queue** Management in work zones

3. Educate/define our industry impact on society and develop strategy to promote

4. Eliminate low-bid system and incorporate environmental and societal impacts Construction and engineering decisions to incorporate social and environmental aspects Create mechanism to allow for innovations.

reduce risk to

DOTs

6. Develop flexible work positions to make industry more inviting to women.

> Develop education/ marketing campaign to introduce asphalt industry to young people at early age

Develop strategy to better promote asphalt industry's impact on society Create positive work environment which rewards new ideas

MURAL SUPPLEMENT

ENVIRONMENTAL SUSTAINABILITY NET NEUTRAL CARBON

BARRIERS

LACK OF UNDERSTANDING

Lack of comprehensive scope (e.g., full life cycle of a pavement)

The low bid system forces industry to innovate in cost reduction, not quality. The agency believes it is getting quality via their specifications.

COMPLEXITY OF THE PROBLEM

ORGANIZATIONAL CHALLENGES

Sustainability is not a priority for pavement owners and industry	Different political agenda around Net Zero	Perception that reducing carbon will affect business	Rigid government specifications	Too many chefs in the kitchen (e.g., too many sustainability definitions)
Low Bid Environment (age old contracting mechanisms)	Objectives of owners and industry not aligning	Technology standards change processes are built to go slow and be risk averse	Use of high carbon energy sources	Risk of experimentation falls to the bottom of chain

Agencies have different objectives and standards for their programs. Little federal alignment or leadership here. In the LEEDS building rating system, government agencies will build rather expensive buildings to obtain higher ratings. We have to help agencies understand our industry can do the same with pavements; innovation for performance.

STANDARDS/RULES

Carbon Negative (Carbon Sequestration) and not Net Carbon Neutral Develop/Adapt "Low-Carbon" commercially viable technologies: path similar to low carbon fuel standards

Implement bio-based technologies

TECHNOLOGY

Create one set of PCRs/carbon accounting rules for our industry Specifications for performance aligned with specifications for Net Zero: data science integration for scalability

INDUSTRY EFFORTS

Industry-led education efforts

Be an industry leader toward Net Negative Carbon (Cumulative Net Zero) Make Climate Change approaches/ progress administration agnostic 1. Increase service life of end product

3a. Develop communication/ research documents that will be administrative agnostic

6. Involve with supply chain stakeholders across the globe to develop PCR/carbon

> accounting standards

2a. Reduce Energy Consumption through production processes to reduce carbon

3b. Create sustainability tools to assess and choose best solution

7. Develop closed vs open production to eliminate emissions 2b. FHWA incentives to lower carbon emissions

4. Collaborate with Universities/ Research Institutes/External Stakeholders to develop long

lasting binders, carbon capture sequestration 2c. Innovate and implement cold technology with equal performance

5. Develop frameworks for consequential LCA, carbon offset strategies for asphalt, alternative fuels: Engage with external groups

ENVIRONMENTAL SUSTAINABILITY IMPACT OF ADDITIVES

NEED FOR LCA/EPD

TESTING AND PROCEDURES

Note: All Strategies for this subtopic are identified in the STAR Symposium Report.

ENVIRONMENTAL SUSTAINABILITY RECYCLED MATERIALS

All recy material the sa	vcled is not ame	Lack definitio perform	of on on nance	Lac awarene aspha most ree mate	k of ess that alt tis cycled rial
Lack of technology around equipment	Legisla manda	ative ates	Logis getting materia it's n	tics of recycled Is where eeded	Implementation of proven technology is slow
Perfor perfor and varia with rec mate	Dor mance high bility Dycled trial	Re-recyc of wa prod	clability aste uct	Lack of cl agencies implicat using sec mate	arity by on HSE ions of condary rials
Public per vs reality can be without his perform	rception of what done ndering nance	Life Cy Assessm using rec mate	ycle nent of cycled rial	Chan specific	ge of cations

	Only compo entire pa syst	/ one onent of avement tem	Failed with re mat	roads ecycled erial	Indus reacti versus proac	stry is onary being ctive	
Recycling by environ pressures disregar performa	driven mental s with d on ance	No tra perform tests tha blind to re mate	ue ance at are ecycled grial	Lack and s of e	of data sharing data	F comm betwee techne and leg	oor unication n asphalt ologists islatures
		Fear of change System should be more innovation friendly and allow failure as means of learning		Using materia be sus	recycled Il may not stainable		

Equal or improved performance with recycled material

Increase use 100% recycled materials where materials never leave jobsite

Establish inventory of road construction, materials etc. Develop tests, tools, requirements to assess the full life cycle impact with new technologies

Work with equipment manufacturers to improve 100% RAP	Create insurance to allow failures	Making pavements/ shingles last longer with recycled material for	FHWA policy: use recycled material first (EEE) to increase use
Implement	Proactively seek	improved performance	Change NCHRP
technology to track and	recycled materials for all		to focus on
inventory in- place recycled material to track	asphalt uses to increase recycled materials used	Decrease paving train of CIR to make it smaller and more agile	construction, and implementation
ponomiance	Recognize high		Understand the impact of any
Develop true performance tests that are blind to recycled	recycled material applications to encourage more use	Build roads to last 50 years	recycle additive on performance to decide on best additives
materials			

Support standards development of products incorporating recycled materials
ENVIRONMENTAL SUSTAINABILITY COOL ROOFS/COMMUNITIES

Have a s that allo to cont tempera roads ar (sens	system Fa ws you rol the ature of nd roofs sors)	ans to mov the heat	e We w commu inclue ide reduc islan	will have unities that de other eas for bing heat id effect	
Roofs that filter toxins	Solar panels shade the roa and parking lo	to So ds on ots a	lar panels all roofs in opropriate climates	Thermal energy from roads and roofs is put to use	
Use phase change materials to thermally buffer roads and roofs	Use colorec materials	We to f to	want roofs ully resilient other perils	Have roads that generate electricity by thermoelectric effect	

Be an active partner in energy code and key states where these policies are being implemented

ENVIRONMENTAL SUSTAINABILITY EMISSIONS AND ODORS

Visual perception	Air quality issues - particulate, NOx & SOx	Public education and messaging	Work is done in the field harder to control emission, manufacturing can be controlled with technology	Identify odors and perception of odors
What is the definition of an odor	Quantify odors	What are the emissions doing to the environment	Idling trucks and heavy equipment	Emissions and odors will impact business
Perception of smells cause health issues	Have to do everything hot, asphalt has to be hot to work with it	Industry image issue associated with smell	Chemical problem/people problem - living around facilities	Social media/ NIMBY
Technol expen	ogy is Odor sive subjec	is Emissio tive measu	ons are Health assoc irable with o	effects iated dors

Temperature	Chemistry/ Material	Plants run hot which cause emissions	Vapors coming off
Unconfined	Heavy trucks emit emissions which are not associated with asphalt production	Current Specifications cause/allow high temperature	To be competitive companies are continuing to use the same assets
industry habits - outdated perceptions of higher temperatures means better	Dryer emissions in Europe, additional odors when using RAP	Outdated equipment at plants	We don't know why it smells
product	Low bid	Emissions capture technology is expensive	Industry asking for high product temperature at delivery

Develop an environmentally friendly low cost scavenger/odor reducer	Considerations of environmental impacts built-in to the contracts	Explain the hazard with odors
Good road for little smell everyone will understand the risk v. reward	Community concerns will be addressed around facilities	Average production temperature is lowered by X %
Health hazard associated with odor	Materials are moved the shortest distance possible to reduce emissions	Fact/science based regulation not lobbied

ENVIRONMENTAL SUSTAINABILITY OTHER

	1. De moneta for carb environ impa	velop 8. Identi y value to use on and generat nental indust cts make us nega		tify ateo stry s c ati	/ how 3. Development CO2 strategy d by more province / b re: sustain Don strategy		velop y to be pactive inability	
2. Directi correct determin credit to p incent	ionally value ation/ provide ive	5. Inv ideas to proces collect (atmos	vest in develop sses to CO2 from sphere		4. Es indi guid for pro sustai act	tablish ustry elines oactive nability ions	7. Do co sus	evelop NPV ncept for tainability
6. Deve unified me for asp indus on L(elop essage halt try CA	De moneta for o sustair asphal to inc	evelop ary system carbon nability for t industry centivize		Develo to ca utili Drive ne in	op systems pture and ze CO2. e carbon egative dustry	Deve a for mes impl on s to c	elop unified pproach proactive saging and ementation ustainability drive social
		indu ch	istry to ange				an	d political agenda

MURAL SUPPLEMENT

PERFORMANCE (DURABILITY) PERFORMANCE REQUIREMENTS

SPECIFICATIONS

data

investigation

benefits

PERFORMANCE REQUIREMENTS

Performance prediction should be adaptable to future technology	Performance should be recognized to meet a mobility requirement / human factor	Future performance requirements should anticipate better performance of competitive
Future performance requirements are value- engineered based	Performance requirement for maintenance decision making	Performance- based specifications instead of prescriptive

PERFORMANCE-BASED BIDDING

Performance to be included in sustainability measurements and requirements

CONSUMER EXPECTATIONS

Consumer product scale for shingles that predicts longevity

	1. Im Balan Desig accep for for perfor	plement ced Mix gn and otance uture mance	2. Us Build-o maintair proj	e/fund operate- n-transfer ject	3. Ada performa requireme acknowle climate ch	apt ance ents to edge nange
4. pav base perfe y	Warrant vements d on field ormance vearly	5. env that inn gre tol by	Create ironment promotes ovation / ater risk erance Owner	6. Inc fund th public partr const	crease/ ne use of private nership truction	7. Make roofing warranty periods match actual life cycle
8. Co with indus will futur techr (autor vehicle	llaborate n other tries that impact e traffic nologies nomous	9. the pave tran	Defining future of ments in a sportation system	10. I perfo require high va appl	Explore ormance ements for lue asphalt ications	11. Flexible performance requirements to easily make adjustments
cities, t toll roa	ruck only ads, etc.)					

PERFORMANCE (DURABILITY) PERFORMANCE DRIVERS

Additive age po	es that Auto borly ve	enomous ehicles	P Const practic manufa	oor ruction ces and acturing
Durability	Waste	Incomp	batibility	Climate
	materials	of ad	ditives	change
Lack of	Product	Shingl	es are	Shingle science
resource	chemistry	not c	often	is slow to
optimization	around roofing	recy	cled	advance

	Low system I perforn and inno	bid hinders hance ovation	Indus reactive proact the se	try is versus tive on cience	Refining cha) process nges	
Future c in mobil patte	hanges lity and erns	Linear ea	conomy circular	Public realize self-fu liability and roo	doesn't they are inding for road f failure	Roo manufi do not incentive a long sh	ofing acturers have an e to create er lasting ingle
		Asphal not dri refin	t does ve the ery	Binder	r aging		

Create additives and treatments that reduce aging

Create flexible procurement system that includes all stakeholders and factors (econ, env, social) Build for future mobility

PERFORMANCE (DURABILITY) RECYCLED MATERIALS

OTHER

How to enhance in-place recycling technologies?	DOTs control how much RAP and RAS can be recycled.	There is a negative perception with recycling RAP or RAS back into roads and roofs.	How do we optimize our production plants to recycle more?
	PEKFUK	KMANUE	
How do new recycled materials age?	Some of the recycled materials compromise recyclability of asphalt.	When recycled materials are used they are overheated.	What are the new approaches/ tests we have to develop to evaluate new materials for performance?
Will new recycled materials (RAP) contribute the same to asphalt as they currently do?	We don't have boundaries for recycling other materials in roads/	How many times can we re-re- recycle these materials?	What is the real impact on sustainability?

INVESTMENT

- What is the return of investment by using recycled materials?
- Are roads the best place for some of these recycled materials?

Have intuitively simple methods for recycling.	Selection of technology based on a life cycle cost analysis.	Zero downcycling.
Enhance quality of recycled materials before adding them to roads.	Build roads and roofs to have a longer life, lower cost, lower environmental footprint.	Our industry will solve other industry's recycling problems without creating more problems for us.

Partne equip manufact improve process re materi	er with Partne oment waste s turers to cha how we recycled rials.		r with supply in. Same q		quality old all s to the uality.	
Work with suppliers/ agencies to allow binders that don't meet traditional PG specs	Test th product constit so binde include re mater	e final not the uents ers can ecycled ials.	Understa health, and enviro impacts recyo mate	and the safety, onmental of new cled erials	Be new materia to ma work & r	open to recycled Is and how ake them in roofs roads
Set the standards for acceptance to help evaluate new recycled	Change p structura metho accomr recy mate	pavement al design ods to nodate cled rials	Encoura fractic to en perform RAP	Encourage RAP fractionation to enhance performance of RAP mixes		ate general blic that cling isn't er quality
materials.	Chang risk av behavi DOTs warranty	ge the ersion iors of - (i.e. / roads)	Get o stakeh involveo benefits recycl	other olders d - who s from ling?		
		Also for w incorpo	look ays to rate RAS			

PERFORMANCE (DURABILITY) FUTURE USE

Deliver is gea vehic multifu pavem stormw	y system ared for les not nctional ents i.e. ater etc.	Constr by alr built	rained ready roads	Makin techn asph effec futu	ng a new ology of alt cost tive for re use	La res fund newer	ck of earch ing for asphalt	
American public does not want to deviate away from roads	Gen Z do want to - could in future tr	es not drive npact avel	How of access	lo we s roofs	Differer of roa	nt use ads	Function of owner siloed b diffe organ	onality ership is between erent izations
Roofs get smaller - subs get more affordable	Using as roofs for garde	phalt roof ns	Privat Commo fundi	te v. ercial ing	Roads a barrier for uses	are a other	Less War More ru	nder = itting

Autonomous vehicles have built-in wander	More below ground asphalt products as mass transit shifts to underground tunnels	Self-healing roads
Roads built for autonomous vehicles	Roofing shingles are designed with recyclability as a requirement	Low carbon asphalt
Lighter and lighter products	Asphalt as a feedstock for new applications outside of paving and roofing	Incorporate self-driving car technology to use roads optimally

Na partne and stak engagem autono vehicle in	ew rships eholder ent from mous idustry	Resea funding to self-he road	arch o create aling ds	Difference of regulations		
Layers of regulation	Tech transfer indu	nology between istries	Under wha auton vehicle needs design building	standing at the homous industry s when ing and g roads	Reb aspl mobili	pranding halt as a ty solution

Asphalt roofing as key ways to protect what matters most

PERFORMANCE (DURABILITY) PREDICTIVE TESTING

MODELING

Doubts around adequacy of existing predictive models Large datasets required are time-consuming and expensive to create

LAB VS FIELD/PLANT

Lack of communication between lab and field personnel Field/Plant environment cannot be replicated in lab

Indeterminate correlation between testing conditions

ORGANIZATIONAL CHALLENGES

METHODOLOGICAL CHALLENGES

Bad construction practices undermining good materials

Lack of representative samples

Lack of consideration of sunlight spectrum in performance prediction

Pavements should last 100% longer	Correlation Standards between lab and field	Real Time Data Collection, Mining, and Interpretation for the entire operation		
		cycle through automation		
Quick relevant QC	Keep historic data handy to aid traceability	Uniform adoption of better predictive testing		
Knowledgeable personnel understanding the entire process	An aggregated open-source publicly available model and data: materials, construction, monitoring			

1. Create tools to predict pavement service life2. Collat with Manag Teat		aborating Asset gement ean	orating sset ment r		4. Collaboration with global set of Road Owners, industry, Academia for next Generation testing		
5. Efficient management of data systems collecting, storing pavement management data	6. Cross training and involvement for lab personnel	7. Estab govern stand promote trustw and tran data so	lish data nance lards: altruistic, orthy, sparent cience	8. E Pave (Incluc life	BIM for ements de whole cycle)	9. Tie predictive testing to warranty of pavements (include warranty within	
10. Develop new predictive tests that evaluates performance after the placement	A. Collaborating with Asset Management Team. Collaboration with global set of Road Owners, industry, Academia for next generation testing. Establish data governance standards: Promote altruistic,	models to perform B. Arti Intellig for Pav Manage System. manage data sy collect stor paver manage	o predict nance ificial gence ement ement Efficient ment of vstems cting, ing ment ement	C. Trai collabo ensure o resul all p E. D Sys Pro Review Invest	evelop tems/ mote/ v for Site	bid process) D. Develop new predictive tests that evaluates performance after the placement. Create tools to predict pavement service life	
BIM Strategic Roadmap	trustworthy and transparent data science models to predict performance A Strategic loadmap Building Information Modeling (BIM) for Infrastructure Overview		sim for nents whole ycle)	Mate and d in the Na efforts acce d	Pavements and Materials data, data governam and data standards are a large in the overall BIM for Infrastruc National Strategic Roadman efforts. Pavement data needs accessible and leveraged for o driven decisions across the whole asset lifecycle and included in BIM efforts.		

S-66

PERFORMANCE (DURABILITY) OTHER

MURAL SUPPLEMENT

ECONOMICS (INFRASTRUCTURE POLICY AND FUNDING) INCENTIVIZE INNOVATION

Tradition - build roads the same over last 40 yrs.	Agencies tend to not trust industry	No DOT playbook for innovation. No process except low bid.	Industry hasn't brought adequate scale to implement P3.
lack of stated vision for innovation by our industry	DOTs are risk adverse	Contractual limitations around long-term bonding	DOT's will not change how they do contracting
	Financial risk by all parties	No conversation with DOTs around innovation	DOT's lack organizational innovation goals. One person calls the shots.

F	DOT partnership plan	Recogr and rewa innova	nition ards for ation	Commu innovati publ	nicate ion to ic
Change ent business model/ paradigm	ire 30 y now, p sho prim of co doci	ears from erformance uld be a ary part ntracting uments	Pron for in other pro	note P3 novation than for ojects	Proprietary products are well received by agencies
Influence incoming leaders to value innovation		on as a ue and ation	Develop innova technolog have a fir reward (N	more tive ies that nancial WMA)	

Build lease model where Govt leases land and contractor owns road	Create culture of recognizing failure as part of innovation	Work with AASHTO leaders and FHWA to include performance in contracting
		methods
How do we get more value engineering	Figure out how to change DOT culture of being risk adverse	Move toward more true performance parameters in specs
Work with DOTs to have innovation included in job descriptions	Partner with Big Innovative Companies (Amazon) to advocate for good roads and funding	Fund implementation of innovative research

ECONOMICS (INFRASTRUCTURE POLICY AND FUNDING) Advocacy

Lack advocacy at the grassroots level.	We don't who to ta Or how t advoca	know alk to. o do cy.	We think messag everyo need	k one je fits one's ds.	We tend to our own bus and don't co the messa Reluctanc advocat	mind iness, ontrol age. e to e.
Being the voice for funding.	Advocacy easy to legal iss	is not do - gues.	Legisl often f donors public n	ature avors 5, not beeds.	We wait for science, but is not on our We need d	the time side. ata.
Very fine line between advocacy and lobbying.	It takes ti build relatio that allo us to ha conversat about cha	ime to Dnships ow ave tions nge.	Lac coaliti	k ons	There are a of new pla advocati in our dom	a lot yers ng nain.
Too foo lookin inste looking We nee proa	cused on ng back ead of forward. ed to be ctive.	Low enviro doesn' asphalt to sl	-bid nment t allow industry hine.	Entire industr to del same n	asphalt ry needs iver the nessage.	

Unified ma among in associa	essage dustry tions.	Action advocad Govern	based cy from iment.	Look a define I for 5-	head and key topics 10 years
The pu is our gr advoo	ublic eatest cate	Gover trust asphalt i	nment s the industry	Elin ne pro ad	minate gative essure vocacy
	Create me that th compan use for busine	essages ne oil ies can r their esses	We be solutio sustain goa	come a n to the nability als.	

Partner with agency to deliver message to the public

Foster collaborative advocacy with governments

ECONOMICS (INFRASTRUCTURE POLICY AND FUNDING) Advocacy

Industry stuck in its own paradigms - looking backwards not proactive/lack	Lack of education on sustainability being a priority	Lack of a clear definition of sustainability	Lack of public education on holistic nature of sustainability (need to have long-lasting
Lack of bottom- up drive from public towards sustainability	No standardized value assigned to sustainability	No unified front from both top-down and bottom-up within the industry leading to zero implementation	Sustainability has no end point: it is a process
Misconception on being green inversely related to cost	Human Nature: Change is hard, not scared enough around climate change	Politics around sustainability/ sensitive to political climate	Lack of accountability around sustainability
	Organizational approach may not align with sustainability	Lack of trade-off examples around sustainability: trust issues	

EDUCATION/CONSENSUS

WELL-INFORMED STAKEHOLDERS

Find the Who first then the How	Agency decision makers are educated on operationalizing sustainability	Educate general public

SUSTAINABILITY IN DECISION-MAKING

Planning horizon much longer	Incorporating sustainable values within industry	All tenders include sustainability value component that can	Sustainability Culture is strong as Safety Culture
		determine	
		awarding of a contract	

1. Create a coalition to develop strategies and advocate for changes in decision making	2. Labe Roads energy lower o footp	eling of s (e.g., y star, carbon print)	3a Edu mat deve through NAPA to Online Sustair	Use cation terials bloped APA/AI/ educate around	3b. Share clear message defined by trade associations, adapt the message to the audience
4. Al/asphalt industry to create a program to incentivize through FHWA/ state DOTs on sustainable	6a. Lea safety pr and inco sustain	rn from rograms prporate pability	6b. I objec our ind alignm objec gove	Explain ctives of ustry and pent with ctives of rnment	7. Develop a tool for material producers to evaluate and understand economics
Reach ou stakeh (farmers about st	t diverse olders market) rategies	Crea task throu with ex teams FP2) to p sustain (Advoo	ate a force gh AI kternal (APA, promote ability cacy)	Estat valid progra sustain	around sustainability for broader systems Dish a ation am for ability
T to the susta choo	here is a ne understand componer inability, he ose one ob first and st	eed d all hts of owever, jective art	su v De	Stop defi stainability vorking tow evelop a Mir Sustainab	ning and start ards it: ndset of illity

ECONOMICS (INFRASTRUCTURE POLICY AND FUNDING) EDUCATE DECISION-MAKERS

Have to get in front of decision makers	Visionary leader to improve infrastructure	Global influencer to advocate on our behalf i.e. Bill Gates, Elon Musk etc.
Provide examples of our successes/ innovations	Broad goal would be to keep congress focused on infrastructure	Trusted resource for decision makers
Talk to decision makers, we need to move up the list	Motivate legislators	Educate general public on the value of roads

For roofing: working with insurance companies and contractors

Roofs are used every day

ECONOMICS (INFRASTRUCTURE POLICY AND FUNDING) BEST PRACTICES

INABILITY TO COMMUNICATE / TRUST

Lack of single voice unanimously accepted	Fear of losing business because of novel innovations making	Inability to explain to owners the potential risk / rewards from innovative ideas	Lack of trust between groups (engineers/ politicians/ public, etc.)
	pavements last longer	Lack of understanding	
	No desire of companies to accept innovation from competing companies	communication channels	

INABILITY TO CHANGE

Who defines best practices? Lack of consensus

Systemic / organizational resistance to change Lack of reward for innovation / fear of deviating from traditional practice

Concern about new costs to innovate / making current capital obsolete

Incentivize industry sharing of best practices	Recognize there is no end point	Become proactive in all aspects of our industry	Get out of comfort zone
Create loud, clear, consistent voice to communicate our message	Fully integrate pavement & materials data into Building Information Management	Compile and use data for best practices	Funding policy should be economically, environmentally, socially responsible
Provide more leadership from our industry	(BIM) for infrastructure as a construction best practice Total commitment	Take responsibility for our own actions /stop finger pointing/perform to highest	Create some mechanism or forum for discussion / partnership
Be more strategic / future-thinking in discussions		Build and grow relationships within industry and owners and all stakeholders	

ECONOMICS (INFRASTRUCTURE POLICY AND FUNDING) OTHER

Maintenance costs are high, little political incentive to fund until critical state (FAC)	Top-down approach to funding rather than collaborative	Short election cycle leads to focus on short term issues	Decoupling between engineer at decision level and broader policies
States and counties own the roads	Risk aversion by agency personnel and broader industry	Aversion to alternative procurement process	Too much inertia - takes effort to make changes
	Limited taxpayer dollars available	No funding dedicated to innovation	

Fundi mechanis incentiv innova	ng m that rizes tion	Perfor bas specifi not pres	mance sed cation; scriptive	Chang perce road in value of ex	e public ption of ndustry: instead pense	
End user is the voice of the industry		Multiple procurement methods accepted by agencies		New f mech that giv and c flex	New funding mechanism that gives states and counties flexibility	
	Long- warra (20-30	term nties years)	Agend able to the need the n	cies are acquire funds led by etwork		

INNOVATION-DRIVEN FUNDING

RCM = reliability centered maintenance; B-RCM = backfilled reliability centered maintenance

TARGETED STAKEHOLDER PARTNERSHIPS

Asphalt Institute Foundation 2696 Research Park Drive Lexington, KY 40511 859.977.5927 www.asphaltfoundation.org